

令和2年7月豪雨

□令和2年7月豪雨に伴う

熊本県南部芦北町・津奈木町周辺の被災状況

熊本大学くまもと水循環・減災研究教育センター 教授 宮 縁 育 夫

1. はじめに

2020年7月3日から31日にかけての令和2年7 月豪雨は、九州や中部・東北地方など日本列島の 各地で、河川氾濫や斜面崩壊といった甚大な被害 をもたらした。とくに7月3日から4日に記録的 な豪雨に見舞われた熊本県南部地域では死者63名、 行方不明者2名を出す大惨事となった。人吉市・ 球磨郡球磨村・八代市では球磨川が大規模に氾濫 し、5000棟以上の住宅が浸水して多くの人々が避 難生活を強いられたが、八代海に近い葦北郡芦北 町と津奈木町では多数の斜面崩壊や浸水等が発生 し、14名の貴重な人命が奪われるなど深刻な被害 が認められた。

筆者は災害発生直後の7月5日から熊本県南部 の芦北町・津奈木町周辺域で起こった斜面崩壊や 土石流による被害状況について現地調査を行い、 その結果はすでに報告済みである(宮縁・鳥井、 2021)が、本報ではその概要について述べる。

2. 調査地域の概要

今回の令和2年7月豪雨によって甚大な災害が 発生した熊本県南部は、臼杵-八代構造線以南の 九州山地の西部地域にあたる。この地域にはおも に秩父帯のジュラ紀-前期白亜紀付加体とその南 に四万十帯の白亜紀-古第三紀の付加体が存在し、 それらの複雑な地層や岩体は北東〜南西方向に配 列している(斎藤ほか、2010)。また、熊本・鹿 児島県境周辺域には後期中新世〜前期更新世にか けて噴出した肥薩火山岩類が分布している(永尾 ほか、1999)。

2020年7月に斜面崩壊が多発した芦北町および 津奈木町周辺の地質は、北から南にかけて、ペル ム紀~白亜紀の正常堆積物、シルル紀~石炭紀の 蛇紋岩や苦鉄質岩の異地性岩体、メランジュを主 体とする前期ジュラ紀の付加体、砂岩・チャート などからなる前期~後期ジュラ紀付加体(整然 相)、後期ジュラ紀~前期白亜紀付加体(メラン ジュ)、新第三系の肥薩火山岩類が分布している (斎藤ほか、2010)。また、一部の地域では肥薩火 山岩類がジュラ紀~白亜紀付加体を覆っている状 況が観察できる。

3. 令和2年7月豪雨の発生状況

2020年7月3日から7月8日にかけて、日本付 近に停滞した前線の影響で暖かく非常に湿った空 気が継続して流れ込み、西日本から東日本にかけ ての広い範囲で記録的な大雨となった。7月3日 ~8日までの総降水量は九州南部および北部地方 で1000 mm、近畿地方で900 mm を超えるところ があった。とくに、九州南部・北部地方、東海お よび甲信地方では、24・48・72時間降水量が観測 史上1位の値を超えるなど、7月の月降水量平年 値の2倍から3倍となる豪雨が出現した。この7 月3日からの豪雨に対して、気象庁は「令和2年 7月豪雨」という名称を定めた(2020年7月9日 発表の気象庁資料)。

熊本県では2020年7月3日から4日にかけて激 しい降雨に見舞われた。7月3日明け方から雨が 降りはじめ、その日の総雨量は熊本県の多いとこ ろで150 mm 程度であったが、4日0時頃から県 南部に線状降水帯が形成され、徐々に激しい降雨 となった(熊本地方気象台、2020)。気象庁田浦 気象観測所(芦北町)では2~6時まで時間雨量 55.5~72.5mmの強雨が継続し、5~6時には最 大時間雨量72.5mmを記録した。気象庁観測デー タによる7月3~4日の総雨量は熊本県北部で 100 mm以下と少なかったが、八代市以南の地域 では200 mm以上と多かった(図1)。とくに、熊 本県南部の人吉・球磨・芦北地方では総雨量400 nm以上に達し、芦北町や水俣市では500mmを越 える地点があった。その降雨は7月4日0~6時 頃に集中しており、2~6時までの4時間雨量 は熊本県南部で100mm以上、芦北町周辺域では 250mmを越えていた。6時以降、降雨は徐々に 穏やかになり、10時頃までにはほぼ終了した。

4. 斜面災害の発生状況

令和2年7月豪雨による降雨量が多かった熊本 県南部の芦北町と津奈木町において多数の斜面崩 壊が確認された。その斜面災害は、崩壊のみによ るものと土石流に移行したものに大別された(図 2)。以下では、代表的な災害発生地点の状況と それぞれの特徴について述べる。

4-1 芦北町田川地区

芦北町田川牛淵では、傾斜25°程度の南西向き 林地斜面で崩壊が発生し、その崩壊土砂が流木と ともに流下して3軒の住宅を襲って住民3名の尊 い人命が奪われた。崩壊が起こった斜面は浅い集 水地形となっており、斜面の中部から下部には

図1 熊本県周辺域における2020年7月3~4日の総雨量分布(気象庁観測データを使用)。

スギの造林木が存在し、崩壊頂部付近には樹高 15~20mの常緑広葉樹が認められた(図3)。崩 壊の大きさは、長さ(水平距離)100m、高さ60 m、幅25~50m程度であった。幅25~30m、高さ 13mほどの滑落崖の南面には砂岩が露出してお り、その上位には厚さ2~3mで、径数 cm 程度 に著しく破砕されたチャートが観察され、砂岩と ともに北西方向へ傾斜している。北側崖面には数 cm 程度の大きさに著しく破砕した砂岩が認めら れ、南側のチャートとの間には厚さ約20cmの半 固結した黄白色の粘土層が見られた(宮縁・鳥井、 2021)。本崩壊はジュラ紀付加体の整然相分布域 のチャート(北側)・砂岩(南側)の境界の断層 線上に位置しており(斎藤ほか、2010)、断層の 走向と滑落崖での境界面の走向はおおむね一致し ている。

図2 令和2年7月豪雨による斜面災害のタイプ。 (A)斜面崩壊のみの土砂災害(芦北町野添地区)。(B)斜面崩壊が土石流に移行した災害(芦北町小田浦地区)。

図3 芦北町田川地区の林地斜面における崩壊の発生状況。

破砕したチャートと砂岩は風化を受けているも のの半固結化しており、ともにカタクレーサイト と考えられ、厚くて軟弱な強風化土層となると ともに断層破砕帯を形成している(宮縁・鳥井、 2021)。今回の豪雨では、おもに砂岩を母岩とす るカタクレーサイトの強風化部が崩壊したと判断 される。斜面に生育していた広葉樹などの根系は 細根を除くと、50~70cmまでの深さにしか達し ておらず、崩壊はもっと深い風化土層にまで及ん でいたが、岩盤そのものを大きく破壊するような 崩壊ではなかった。轟音を聞いたという住民の証 言から、斜面崩壊は降雨のピーク時にあたる7月 4日4時過ぎに発生したとみられる。

4-2 芦北町宮浦地区

佐敷川支流の宮浦川沿いの北西向き林地斜面 でも崩壊が発生した。この斜面は傾斜30°程度で、 やや凹型の形状を呈しており、植生は樹高17m程 度のスギ・ヒノキ造林木や広葉樹からなる。高さ 70m、幅40m程度にわたって斜面崩壊が起こり、 崩壊土砂は多量の流木とともに運搬されて標高10 ~20mの水田に扇状に堆積したが、土砂の流下・ 堆積域に住宅などの建物がなかったため、人的被 害は出ていない。滑落崖の高さは20m程度であり、 今回調査した崩壊のなかではもっとも深い崩壊で あったが、岩盤を大きく破壊するものではなかっ た。滑落崖の大部分は数 cm ~10cm 程度の間隔 で亀裂が発達する砂岩で構成されており、その上 位には風化・断片化した泥岩が存在している。こ の地点はメランジュを主体とするジュラ紀付加体 と砂岩・チャートなどからなるジュラ紀付加体整 然相の境界付近に位置していること(斎藤ほか、 2010)から、前述した田川地区の崩壊と同様に、 断層破砕帯によって厚い風化土層が形成されてい た可能性が指摘されている(宮緑・鳥井、2021)。

4-3 芦北町野添地区

芦北町野添地区では、傾斜20°程度の北東向き 林地斜面で崩壊が発生した。崩壊の大きさは、長 さ100m、高さ40m、幅40~50m程度であり、崩 壊した土砂は直下にあった人家を巻き込んで流下 し(図2A)、建物や自動車の火災も発生してい る(図4)。この地区の地質は古生代の超苦鉄質 岩類からなるとされ(斎藤ほか、2010)、現地で も崩土中に変質したハンレイ岩や蛇紋岩などの岩 石が認められた。この崩壊の北側に隣接する部分

図4 芦北町野添地区の斜面崩壊による被害状況。住宅被害とともに車両火災も発生している。

は以前にも崩壊したことがあり、擁壁が施工され ていた。

4-4 芦北町女島地区

芦北町安島地区では、小崎地区の集落背後にあ る林地斜面や谷筋などで崩壊が発生して人的被害 がみられたほか、海岸に近い釜地区でも土石流に よる災害が発生した。

芦北町女島小崎では、集落背後にある林地斜 面で崩壊が起こった。その斜面は傾斜35°程度で、 平滑からやや凸型の形状を呈しており、高さ40 m、長さ70m程度にわたって崩壊が起こり、崩壊 土砂は直下の人家を襲って、隣接する道路にも氾 濫堆積していた(図5)。滑落崖にはジュラ紀付 加体整然相のチャート(斎藤ほか、2010)とみら れる岩石が観察された。また、この崩壊から150 m程度北側の谷でも崩壊が発生しており、崩壊土 砂が土石流として流下して下流にあった人家を倒 壊させるなどの被害を与えている。

一方、女島釜地区では八代海に面する天見岳の 北西山腹で崩壊が発生した。崩壊頂部は標高170 m付近の傾斜が30~35°程度の谷筋の林地斜面に 位置しており、樹高約13mの広葉樹が生育してい た。高さ3m、幅10m程度の滑落崖には灰褐色の 風化土層と火山岩の円礫からなる礫層が認められ たが、斜面崩壊そのものは岩盤に達しているわけ ではなく、規模も小さい。崩壊土砂は水を含んで 土石流となり、メランジュを構成する混在岩から なる流路沿いの斜面を侵食して、標高65m付近に 設置されていた治山堰堤(1994年施工)に堆積し ていた。また、一部の土砂・流木は越流し、堰堤 下流でも流路や道路を侵食して(図6)、標高10 m付近にあった小屋を損壊するなどの被害を与え て海にまで達している(図7)。また、砂画分な どの細粒成分からなる土砂は海岸沿いの農道を流 下して氾濫堆積し、自動車が流されるなどの被害 も出ている。治山堰堤より下流の土石流堆積域に は、径1.5mに達する火山岩やチャートなどの巨 礫が散在しており、このような巨礫が運搬されて 住宅などに被害を及ぼしたことがこの地区の斜面 災害の特徴である(宮縁・鳥井、2021)。

4-5 津奈木町福浜地区

津奈木町福浜平国の東方には、標高177mの円 錐形の山が存在し、その南斜面の谷筋で崩壊が発

図5 芦北町女島小崎地区の斜面崩壊と住宅被害。

図6 芦北町女島地区天見岳の治山堰堤(写真右奥)下流部での土石流による侵食状況。

図7 天見岳山麓での土石流の氾濫と被害。

生した。崩壊の頂部は標高140~150m付近の傾斜 20~25°程度の林地斜面に位置し、斜面には樹高 約18mのヒノキ・スギ造林木が存在していた。そ の斜面が幅30m、深さ10m程度にわたって崩壊 し、滑落崖には球状風化が進んだ青灰色の火山岩 が観察された(図8)。風化した火山岩の直下に は、砂質火山灰層と成層したシルト質火山灰層の 互層(全層厚2m以上)が認められた。さらに下 位には砂岩ブロックを含む砂泥互層からなる混在 岩(前期ジュラ紀のメランジュ相)も観察された。 混在岩上位の火山灰互層は、風化が進んだ火山岩 とともに新第三紀以降の肥薩火山岩類であり、周 辺地域の標高の高い尾根部には新第三系の肥薩火 山岩類がキャップロックとして存在している可能 性が高い。降雨時に細粒な火山灰層が不透水層と なることで風化した火山岩の崩壊、つまりキャッ

図8 津奈木町福浜地区林地斜面での崩壊。

図9 津奈木町福浜地区の斜面崩壊に伴って発生した土石流の氾濫状況。

プロックの崩壊を誘発した可能性が考えられている(宮縁・鳥井、2021)。

崩壊土砂は土石流として渓流を流下して、標 高10m付近にあった住宅1軒を全壊させ(図9)、 3名の犠牲者が出た。土石流は流路沿いの斜面も 侵食したとみられ、住宅が被害を受けた標高10 m付近には大量の細粒土砂や流木のほか、径1m 程度に達する火山岩などの巨礫も散在していた。

5. おわりに

以上述べたように、熊本県南部の芦北町・津奈 木町周辺域で令和2年7月豪雨によって発生した 斜面崩壊は、土石流に移行したものとそうでない ものに大別された(図2)。これらは崩壊発生場 所の違いを反映しており、前者は谷筋の上流部急 斜面で発生し、崩壊土砂が表流水や流木と一体に なって土石流化し、流路沿いの斜面を侵食しなが ら長距離流下して下流域の住宅などに被害を及ぼ し、人的被害にもつながった。一方、後者は平地 に隣接する25~30°程度の急斜面で起こった崩壊 で、崩壊土砂や流木が流動した距離は100~200 mほどであるが、斜面直下に家屋が存在した箇所 では人的被害も出ている。このように集落の背後 に急斜面の里山があるような状況は、わが国の中 山間地域ではごく一般的にみられる風景であり、 このタイプの災害は激しい豪雨に見舞われた場合 には、どこでも起こりうる可能性がある。そうし た地域では人口全体に占める高齢者の割合が高い 傾向にあり、避難体制の整備が大きな課題といえ る。

なお、現地調査の一部は産業技術総合研究所の 斎藤 眞氏、消防庁消防研究センターの新井場公 徳氏、土志田正二氏、大津暢人氏、藤井皓介氏と 共同で実施した。最後に、令和2年7月豪雨に よって被災された方々に心よりお見舞い申し上げ ます。 引用文献

- 熊本地方気象台,2020:災害時気象資料-令和2年 7月3日から4日にかけての熊本県の大雨につい て-.21p.
- 熊本県地質図編纂委員会,2008:熊本県地質図 (10万分の1)説明書.熊本県地質調査業協会, 118p.
- 宮縁育夫・鳥井真之,2021: 令和2年(2020年)7 月豪雨によって熊本県南部で発生した斜面災害. 地学雑誌,130,印刷中.
- 永尾隆志・長谷義隆・長峰 智・角縁 進・阪口和 之,1999:不均質なマグマソースから生成された 後期中新世 - 中期更新世の肥薩火山岩類 - 火山岩 の分布と化学組成の時空変化からの証拠 -. 岩鉱, 94,461-481.
- 斎藤 眞・宝田晋治・利光誠一・水野清秀・宮崎一博・ 星住英夫・濱崎聡志・阪口圭一・大野哲二・村田 泰章,2010:20万分の1地質図幅「八代及び野母 崎の一部」. 産業技術総合研究所地質調査総合セ ンター.